

Optical Metasurfaces: Physics & Applications

Patrice Genevet

Centre de Recherche sur l'Hétéro-Epitaxie et ses Applications,

Sophia Antipolis, France

email: pg@crhea.cnrs.fr

Metasurfaces @ CRHEA Group

Rajath Sawant

Sandeep Yadav Golla

Permanents

Dr. Samira Khadir Maître de conférences UCA

Postdoctoral Fellows

Qinghua Song

Renato Juliano Martins

Christina Kyrou

Nikita Nikitskiy (PhD in co-direction avec Julien Brault)

FÉDÉRATION DE RECHERCHE "WOLFGANG DÖBLIN"

email: pg@crhea.cnrs.fr CRHEA

PhD Students

Fouad Bentata (PhD in co-direction with INL)

Anthony Gourdin (PhD in co-direction with Université de Montpellier)

Outline

- 1. General introduction
- 2. Nanoscale manipulation of the electromagnetic field properties
- 3. Applications and contributions

Conventional LiDAE

Fermat Principle

"Stationary Phase Principle"

Fermat Principle: conventional optics

Pendry, et. al. 2006

Metamaterials: Controlling light propagation

No reflection and no shadow : cloaking

The 21th century, the era of photonics

Science fiction

Metamaterial Greek/latin composition

μετά materia «Beyond Matter»

Material engineered to have a property not found in naturally occurring materials

Metasurfaces @ CRHEA

Cars « propagate » at different speed as a function of the length Cars « propagate » at the same speed of their trajectory

1. General intro: Optics at interfaces

Conventional Material Ordinary materials are built up from atoms. To reduce the underlying complexity, materials are often treated as fictitious continuous media with associated effective parameters such as the Amorphous silica (TEM) optical refractive index. Metasurface Shape size $< \lambda/5$ **Metamaterial** Metamate С made of ta of one or m Lattice $p \approx \lambda$ size $< \lambda /$ $1 \mu m$ 2 µm

M. Kadic, G. W. Milton, M. van Hecke and M. Wegener , Nature Reviews Physics 1, 198–210 (2019)

1. General intro: Optics at interfaces

One of the laws of optics, **Snell-Descartes law**, states that a light ray passing from one transparent medium to another is bent at the interface by an amount that depends on the so-called refractive indices of the two media.

1. General intro for the optics at interfaces

Locally engineering of the surface response

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.P. Tetienne, F. Capasso and Z. Gaburro, Science 334,333 (2011).

Wavefront control

Engineering of the phase, amplitude, and polarization of light at an interface

Wafer level fabrication of optical components

Phase Addressing Mechanisms

Resonant scattering

- Plasmonic Resonator (π)
- Dielectric Resonator (2π using Huygens EM design?)

Decker et al., Adv. Opt. Mat. **13**, 813 (2015)

Overlapping e & m resonances

Phase Addressing Mechanisms		
Resonant scattering	Pancharatnam-Berry (PB) Phase	Half wave plate 2¢
 Plasmonic Resonator (π) Dielectric Resonator (2π using Huygens EM design?) 	-Polarization conversion -Birefringent plasmonic or Dieletrics -full 2π phase coverage	Nanoscale Half wave plate Output light $\phi'_{xy} = \pi/2$ RCP $E'_{y} \qquad \qquad$
a) b) 5 μm	A geometric phase obtained	from anisotropic nanopillars

Decker et al., Adv. Opt. Mat. **13**, 813 (2015)

eometric phase obtained from anisotropic na

$$\Delta \phi = 2\phi$$

Phase Addressing Mechanisms

Resonant scattering

Pancharatnam-Berry (PB) Phase

Output light k_{out} $\phi'_{xy} = \pi/2$ RCP E'_x π phase shift k_{bic} Incident light k_{bic} $k_{bic} = -\pi/2$ LCP

- Plasmonic Resonator (π)
- Dielectric Resonator (2π using Huygens EM design?)
- -Polarization conversion -Birefringent plasmonic or Dieletrics -full 2π phase coverage

Effective index waveguides

M. Khorasaninejad, Nano Letters, 16(:7229, 2016.

- Not subwavelength in thickness
- Strong NF coupling

Decker et al., Adv. Opt. Mat. 13, 813 (2015)

Y. Xie et al., Nat. Nanotechnol. 15, 125–130 (2020)

email: pg@crhea.cnrs.fr CRHEA

P Genevet, F Capasso, F Aieta, M Khorasaninejad, R Devlin, Optica 4 (1), 139-152 (2017)

Effective Index Waveguides

Full wavefront addressing requires phase elements ranging across the 2π phase delay

Effective Index Waveguides

M. Khorasaninejad et. al, Nano Letters, 16(11):7229-7234, 2016.

- Dielectric nanopillars acting as waveguides Controlling phase shift by tuning the diameter of nanopillars.
- Agrees with fundamental mode calculation

Phase Addressing Mechanisms

 2π Topological phase

encircling singularities

Pancharatnam-Berry (PB) Phase

-Polarization conversion -Birefringent plasmonic or Dieletrics -full 2π phase coverage

Effective index waveguides

M. Khorasaninejad, Nano Letters, 16(:7229, 2016.

- Not subwavelength in thickness
- Strong NF coupling

Y. Xie et al., Nat. Nanotechnol. 15, 125–130 (2020)

E. Mikheeva, R. Colom et al. (in progress)

Isolated vs Open System

Environment

Energy is conserved Hermitian Hamiltonian Real eigenenergies

Exchange of energy Gain or loss Non-Hermitian Hamiltonian Complex eigenenergies

Scattering: Radiation losses induces non-Hermiticity

Complex frequency analysis: presence of Singularities

pemittivity $\varepsilon = 8.05$, Substrate & embedding medium $\varepsilon = 2.25$

2. Nanoscale manipulation of the EM field properties

M Elsawy, et al., Scientific Reports 9 (1), 1-15 (2019)

Integrated Point cloud sources & Laser scanning

YY Xie, et al., Nature nanotechnology 15 (2), 125-130 (2020)

Integrated Point cloud sources & Laser scanning

YY Xie, et al., Nature nanotechnology 15 (2), 125-130 (2020)

Integrated Point cloud sources & Laser scanning

YY Xie, et al., Nature nanotechnology 15 (2), 125-130 (2020)

Integrated Point cloud sources & Laser scanning

QH Wang et al., Laser & Photonics Reviews 15 (3), 2000385 (2021)

Vectorial wavefront shaping Metasurfaces and holography

Q Song, et al., Nature Communications 11 (1), 1-8 (2020)

Q Song, et al., Science advances 7 (5), eabe1112 (2021)

P. Genevet, CRHEA, CNRS, France

Q. Song

Human perception

Human reaction time (Perceiving and reacting)

- Frame rate around 150 *fps*
- Response times ~273 ms (~4Hz)

Field of view with variable resolution ~120°

- Binocular vision (focusing on an area of interest)
- Powered by brain interpolation

Resolution: number of pixels (?)

Motivation:

Provide tools to increase the perception of the environment beyond human capabilities

LiDAR – Light imaging And Ranging

- Allows to sense the space and map the environment
 - Advanced driver-assistance systems – ADAS
 - Industry 4.0
 - Land mapping
 - Virtual reality/Augmented reality

Maximum range distance is given by the repetition rate

LiDARs applications

United States Patent Application Publication Akselrod et al.

TUNABLE LIQUID CRYSTAL METASURFACES (2021)

Applicant: Lumotive, LLC, Bellevue, WA (US)

nature nanotechnology

ARTICLES https://doi.org/10.1038/s41565-020-00787-y

Check for updates

All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications (2021)

Junghyun Park[©]^{1.6}[∞], Byung Gil Jeong^{1.6}, Sun II Kim^{1.6}, Duhyun Lee¹, Jungwoo Kim¹, Changgyun Shin¹, Chang Bum Lee¹, Tatsuhiro Otsuka¹, Jisoo Kyoung[®]^{1.5}, Sangwook Kim¹, Ki-Yeon Yang¹, Yong-Young Park¹, Jisan Lee¹, Inoh Hwang[®]¹, Jaeduck Jang[®]¹, Seok Ho Song[®]², Mark L. Brongersma[®]³, Kyoungho Ha¹, Sung-Woo Hwang[®]¹, Hyuck Choo[®]¹[∞] and Byoung Lyong Choi[®]⁴[∞]

(52)

LiDARs applications (MHz beam steering)

Juliano Martins, S. Khadir, M. Giudici and P. Genevet, Patent EP21305472.9 (2021), (paper submitted)

Proof of concept 1D – Simple ToF imaging

Juliano Martins, S. Khadir, M. Giudici and P. Genevet, Patent EP21305472.9 (2021), (paper submitted)

Proof of concept 1D

Juliano Martins, S. Khadir, M. Giudici and P. Genevet, Patent EP21305472.9 (2021), (paper submitted)

Voltage applied to the EOD leads to a deflection angle

email: pg@crhea.cnrs.fr CFRHEA

Juliano Martins, S. Khadir, M. Giudici and P. Genevet, Patent EP21305472.9 (2021), (paper submitted)

3D LiDAR imaging

P. Genevet, CRHEA, CNRS, France

email: pg@crhea.cnrs.fr CRHEA

Juliano Martins, S. Khadir, M. Giudici and P. Genevet, Patent EP21305472.9 (2021), (paper submitted)

Beam scanning and projection

Any type of random-access scanning can be implemented int the system

Resolution vs speed

Multi-zones ToF LiDAR

- Human features multi-zone viewing
- Same concept can be adopted on cars carrying LiDAR systems

Multi-zones ToF LiDAR

Juliano Martins, S. Khadir, M. Giudici and P. Genevet, Patent EP21305472.9 (2021), (paper submitted)

4. Conclusion and Perspectives

Optical metasurfaces, composed of ultrathin subwavelength meta-atoms, have enabled flat-optics such as ultrathin lenses, color filters, polarimeters, holograms and absorbers.

Emerging applications are in the area of imaging systems (LiDAR) and displays (Hologram, AR/VR devices)

- Metaoptics for imaging
- Metasurface Holograms for Projective Display Techniques
- Metasurface Colorations for Reflective Display Techniques
- Metasurfaces polarimeters
- Metasurface beam splitters for quantum optics applications
- Nonlinear metasurfaces
- Metasurfaces for real time wavefront manipulation
- Metasurfaces for LiDAR applications
- Conformal Metasurfaces, ...

N. Lebbe, S. Y. Golla, S. Lanteri, P Genevet (submitted) Collaboration with Lanteri group (INRIA)

Metasurfaces and their integration into systems offer unlimited perspectives of industrial applications

P. Genevet, CRHEA, CNRS, France